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LETTER TO THE EDITOR 
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Saha Institute of Nuclear Physics, 92  Acharya Prafulla Chandra Road, Calcutta 700009, 
India 

Received 22 November 1982 

Abstract. A new directed self-avoiding walk (directed SAW) is proposed and studied on 
a square lattice. The critical behaviour of such directed SAWS (in two dimensions) is 
established and shown to be of different universality class from that of an ordinary SAW. 

The SAWS on lattices, describing the excluded volume effect in linear polymers, have 
been studied for a long time and the critical behaviour of their statistics is well 
established (see e.g. de Gennes 1979). Recently, the lattice disorder has been seen 
to affect the pure SAW critical behaviour (Chakrabarti and Kertesz 1981, Derrida 
1982, Roy and Chakrabarti 1982, and references therein). Here, we see that the 
specification of a direction of walk also affects the critical behaviour and the statistics 
of such directed SAWS have an entirely different critical behaviour (from that of an 
ordinary SAW). 

In the percolation problem, a new critical behaviour is observed when one imposes 
an added restriction on the ‘direction of flow’ through the occupied bonds (or sites), 
and such a directed or oriented percolation problem is currently being studied with 
great interest (see e.g. Blease 1977a, b, Obukhov 1980, Dhar and Barma 1981). This 
difference in the critical behaviour of directed percolation from that of ordinary 
percolation indicates that a similar restriction on the ‘direction of walk’ might also 
affect the ordinary SAW critical behaviour. This is because one can picture the cluster 
geometry for ordinary percolation at the threshold (backbone cluster) as one- 
dimensional channels or ‘links’ of SAW character, having intersections or ‘nodes’ (Skal 
and Shklovskii 1975, de Gennes 1976). Although such a fractal picture is not entirely 
correct, it served a very useful purpose in providing a nice intuitive understanding 
and helped in getting some important scaling relations for ordinary percolation 
conduction etc (see e.g. Ziman 1979). A similar picture of the backbone cluster for 
directed percolation would involve ‘links’ which are directed SAW in nature, where a 
walk opposite to the specified direction is not permitted (see figure 1). This would 
then indicate that the critical behaviour of a directed SAW is different from that of an 
ordinary SAW. 

We have studied here the statistics of such directed SAWS on a square lattice. For 
such problems, one would like to know the distribution of the number of walks GN(r) 
of N steps with the end-to-end distance r. For directed SAWS, however, one can easily 
construct a recursion relation for the total number of walks GN for N steps, If, out 
of the GN-1 number of walks for N - 1 steps, ( G N - I ) ~  are those which end up with 
the last (N  - 11th step walk in the horizontal direction and ( G N - ~ ) ~  are those which 
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Figure 1. A part of the infinite square lattice containing a finite step directed SAW. A 
walk opposite to the direction specified is not permitted. 

end up with the last step in the vertical (downward) direction (restriction in the upward 
direction-figure l), then 

GN = ~ ( G N - I ) ~  ~ ( G N - I ) ~  = 2 G ~ - 1 +  (GN-I)~. (1) 
Now, since each horizontal and vertical step (walk) can generate one vertical walk 
for the next step, 

( G N - I ) ~  = GN-Z, (2) 

This total number of walks GN for various steps N and the ratios GNIGN-1 are listed 
in table 1 (up to N = 14). 

Table 1. 

Number of Total number of Average end-to-end 
steps walks Ratio distance 
(NI (GN) (GNIGN-I)  GN)  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

3 
7 

17 
41 
99 

239 
577 

1393 
3 363 
8 119 

19 601 
47 321 

114 243 
275 807 

- 
2.3333 
2.4286 
2.4118 
2.4146 
2.4141 
2.4142 
2.4142 
2.4142 
2.4142 
2.4142 
2.4142 
2.4142 
2.4142 

1.0000 
1.6653 
2.2255 
2.7852 
3.3220 
3.8510 
4.3728 
4.8903 
5.4045 
5.9161 
6.4245 
6.9303 
7.4232 
7.9022 
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As one can clearly see from the table (in fact, checking these G N  values for steps 

(4) 

up to N = 100, we have seen this), expressing G N  as (see e.g. McKenzie 1976) 
N y-1 G N = F  N , 

for N + 03, one gets 

p = 2.4142, 

Y = 1, (6) 

for a directed SAW on a square lattice, compared to p = 2.6385 and y = $ for ordinary 
SAWS on a square lattice (McKenzie 1976). In fact, ( 5 )  and (6) follow directly from 
the recursion relation (3); with G N  - p N ,  the relation (3) reduces to a quadratic 
equation in p giving p = 1 + J2. 

To calculate the average end-to-end distance RN for N steps (first moment of 
the distribution), we simulated such walks on an Uptron S800 desk computer, following 
the algorithm (modifying for such directed SAWS) for exact enumeration of ordinary 
SAWS, outlined by Martin (1974). The results (up to N = 14) are also given in table 
1. Expressing l?N,  for N + 03, as 

R N  - N U ,  (7) 

(8) 

we find (see figure 2) that 

v = 0.86 f 0.02 

for a directed SAW in two dimensions, compared with v = 0.75 for an ordinary SAW 
(McKenzie 1976). It may be mentioned here that, although with the desk computer 
at hand, we could not go beyond N = 14 for RN calculations, we believe the value 
of v obtained here is the correct asymptotic ( N  + CO) limit value, because of the very 
accurate fitting of the above v value for N = 10 to 14 (see figure 2) and the observed 
saturation of G N / G N - I  ratios to the asymptotic p value beyond N = 6 (see table 1). 

0751 t 

100 105  110 1 ’  
log N 

Figure 2. Plot of log I?, against log N. The slope of the straight line fit gives the exponent 
U for the directed SAW in two dimensions. 

We are grateful to Mr S N Karmakar for his assistance in computer programming. 
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